The (Scary) Power of Data Storytelling

Much has been written in recent years about how powerful data storytelling can be, and that’s certainly true. As the saying goes, though, with great power comes great responsibility. Someone who’s great at storytelling is, almost by definition, also great at suppressing the audience’s ability to think critically about what they’re hearing. If we get carried away and start crafting the data around the story instead of the other way around, great storytelling makes that harder for audiences to notice.

Read more

What, exactly, makes one chart better than another?

When people disagree on whether one chart design is better or worse than another, they often have quite different assumptions about what “better” actually means when it comes to charts. Depending on the person, “better” could variously mean more precise, more creative, more familiar, faster to visually process, more inspiring, more neutral, more versatile, more memorable, or any one of several other quite distinct definitions. Agreeing on a common definition of “better” will allow the data viz field to move past some longstanding controversies and make it much easier for novices to learn how to create truly useful charts.

Read more

Why a dashboard on its own won’t improve performance

A short video interview with performance measurement and improvement expert Louise Watson, in which she explains why a dashboard on its own won’t improve organizational performance. We also cover some of the common bad practices that torpedo performance improvement initiatives, as well as key elements that are required beyond just having a dashboard. Some absolute gems for anyone who’s ever struggled with how to choose the right KPIs.

Read more

Highlight “obviously wrong” values on dashboards!

Because errors do happen, our dashboards will sometimes contain “obviously wrong” metric values, such as a “Customer Satisfaction Rating” of 12.5 on 10, or a “Manufacturing Defect Rate” of -14%. It’s essential that our dashboards be “smart” enough to detect such obviously wrong values so that we can visually flag them as incorrect on the dashboard. If we don’t flag obviously wrong values, users will likely notice them anyway, putting the accuracy of every other value on the dashboard into question.

Read more

How to hire a data visualization pro (or become one)

Organizations often ask me how to hire people who can create better charts for their decision-makers and this post summarizes my (current) answer to that question. While this post is written as a guide for employers, it can, of course, also act as a guide for those who want to become data visualization professionals themselves and work for the organizations that so urgently need those skills.

Read more

Why expert graphic designers, data analysts, and software power users can still make bad charts

As I discuss in the pre-workshop video for my Practical Charts course, many charts don’t do a great job of serving the purpose for which the chart was created in the first place. I think that there are several reasons why this is such a common problem and this post focuses on a big one, which is that there’s a lot of confusion around exactly what skills are needed in order to create truly useful charts.

Read more

My favorite chart type

I regularly hear or read comments such as, “Scatter plots are the most useful chart type”, “I love bullet graphs”, or “Clustered bars are better than stacked bars.” In this post, I discuss why these kinds of preconceived preferences or inclinations to use one chart type over another don’t really make sense.

Read more

Automatically flag metrics that require attention on dashboards using statistics (book excerpt)

In order to gain traction and acceptance among users, dashboards must visually flag metrics that are underperforming, overperforming, or behaving in other ways that warrant attention. If a dashboard doesn’t flag metrics, it becomes very time-consuming for users to review the dashboard and spot metrics that require attention among a potentially large number of metrics, and metrics that urgently require attention risk going unnoticed. In previous blog posts, I discussed several common ways to determine which metrics to flag on a dashboard, including good/satisfactory/poor ranges, % change vs. previous period, % deviation from target, and the “four-threshold” method. Most of these methods, however, require users to manually set alert levels for each metric so that the dashboard can determine when to flag it, but users rarely have the time set flags for all of the metrics on a dashboard. Techniques from the field of Statistical Process Control can be used to automatically generate reasonable default alert levels for metrics that users don’t have time to set levels for manually.

Read more

A friendlier dot plot?

Dot plots are a very useful chart type, but many people have trouble understanding them when they see one for the first time, which probably explains why they’re not widely used. In this post, Xan Gregg of JMP and I propose changes to the traditional dot plot design that might make them easier for first-time viewers to understand and, hopefully, make the use of this valuable chart type more widespread.

Read more

Why I now use “four-threshold” flags on dashboards (book excerpt)

In order for a dashboard to gain traction among users, it must visually flag metrics in order to draw users’ attention to metrics that require it. Unfortunately, though, the most common methods of flagging metrics on dashboards (“Vs. previous period,” “Single-threshold flags,” “% deviation from target flags,” and “Good/Satisfactory/Poor ranges”) are prone to several problems: they often flag metrics that don’t require attention, fail to flag metrics that do, and can be slow to visually scan. In this post, I discuss the “four-threshold” method that I now use, since it doesn’t have these shortcomings.

This post is an excerpt from my upcoming book, Practical Dashboards, and is the seventh in an eight-part series of posts on how to determine which metrics to visually flag on a dashboard.

Read more

Good/Satisfactory/Poor ranges on dashboards: Not as effective as they seem (book excerpt)

This excerpt from my upcoming book, Practical Dashboards, is the sixth in an eight-part series on how to determine which metrics to visually flag on a dashboard (i.e., with alert dots, different-colored text, etc.) in order to draw attention to metrics that require it. In this post, I look at the “Good/Satisfactory/Poor” method used on many dashboards. While not as problematic as the “vs. previous period,” “single-threshold,” or “% deviation from target” methods that I discussed in previous posts, this method still has several serious drawbacks that become obvious when pointed out. In the next post in this series, I’ll introduce a more useful approach called “four-threshold” visual flags.

Read more

"% Deviation from Target" flags: Confusion masquerading as context (book excerpt)

This excerpt from my upcoming book, Practical Dashboards, is the fifth in an eight-part series on determining which metrics to visually flag on a dashboard (i.e., with alert dots, different-colored text, etc.) in order to draw attention to metrics that require it. In this post, I look at what I call the “% deviation from target” method of flagging metrics on a dashboard. I explain why, despite seeming like an improvement upon single-threshold flags, and being used on many dashboards, “% deviation from target” flags can easily mislead. In a later post in this series, I’ll introduce a more useful way to flag metrics on dashboards called the “four-threshold” method.

Read more

Single-threshold flags on dashboards: Very common and very problematic (book excerpt)

This excerpt from my upcoming book, Practical Dashboards, is the fourth in an eight-part series on determining which metrics to visually flag on a dashboard (i.e., with alert dots, different-colored text, etc.) in order to draw attention to metrics that require it. In this post, I look at the “single-threshold” method of determining which metrics to flag and why, despite being extremely common, this method has several major drawbacks that become obvious when pointed out. In a later post in this series, I introduce a more useful approach called “four-threshold” visual flags.

Read more